문제는 더보기!
문제
어떤 나라에 N개의 도시가 있다. 이 도시들은 일직선 도로 위에 있다. 편의상 일직선을 수평 방향으로 두자. 제일 왼쪽의 도시에서 제일 오른쪽의 도시로 자동차를 이용하여 이동하려고 한다. 인접한 두 도시 사이의 도로들은 서로 길이가 다를 수 있다. 도로 길이의 단위는 km를 사용한다.
처음 출발할 때 자동차에는 기름이 없어서 주유소에서 기름을 넣고 출발하여야 한다. 기름통의 크기는 무제한이어서 얼마든지 많은 기름을 넣을 수 있다. 도로를 이용하여 이동할 때 1km마다 1리터의 기름을 사용한다. 각 도시에는 단 하나의 주유소가 있으며, 도시 마다 주유소의 리터당 가격은 다를 수 있다. 가격의 단위는 원을 사용한다.
예를 들어, 이 나라에 다음 그림처럼 4개의 도시가 있다고 하자. 원 안에 있는 숫자는 그 도시에 있는 주유소의 리터당 가격이다. 도로 위에 있는 숫자는 도로의 길이를 표시한 것이다.
제일 왼쪽 도시에서 6리터의 기름을 넣고, 더 이상의 주유 없이 제일 오른쪽 도시까지 이동하면 총 비용은 30원이다. 만약 제일 왼쪽 도시에서 2리터의 기름을 넣고(2×5 = 10원) 다음 번 도시까지 이동한 후 3리터의 기름을 넣고(3×2 = 6원) 다음 도시에서 1리터의 기름을 넣어(1×4 = 4원) 제일 오른쪽 도시로 이동하면, 총 비용은 20원이다. 또 다른 방법으로 제일 왼쪽 도시에서 2리터의 기름을 넣고(2×5 = 10원) 다음 번 도시까지 이동한 후 4리터의 기름을 넣고(4×2 = 8원) 제일 오른쪽 도시까지 이동하면, 총 비용은 18원이다.
각 도시에 있는 주유소의 기름 가격과, 각 도시를 연결하는 도로의 길이를 입력으로 받아 제일 왼쪽 도시에서 제일 오른쪽 도시로 이동하는 최소의 비용을 계산하는 프로그램을 작성하시오.
입력
표준 입력으로 다음 정보가 주어진다. 첫 번째 줄에는 도시의 개수를 나타내는 정수 N(2 ≤ N ≤ 100,000)이 주어진다. 다음 줄에는 인접한 두 도시를 연결하는 도로의 길이가 제일 왼쪽 도로부터 N-1개의 자연수로 주어진다. 다음 줄에는 주유소의 리터당 가격이 제일 왼쪽 도시부터 순서대로 N개의 자연수로 주어진다. 제일 왼쪽 도시부터 제일 오른쪽 도시까지의 거리는 1이상 1,000,000,000 이하의 자연수이다. 리터당 가격은 1 이상 1,000,000,000 이하의 자연수이다.
출력
표준 출력으로 제일 왼쪽 도시에서 제일 오른쪽 도시로 가는 최소 비용을 출력한다.
서브태스크
1 | 17 | 모든 주유소의 리터당 가격은 1원이다. |
2 | 41 | 2 ≤ N ≤ 1,000, 제일 왼쪽 도시부터 제일 오른쪽 도시까지의 거리는 최대 10,000, 리터 당 가격은 최대 10,000이다. |
3 | 42 | 원래의 제약조건 이외에 아무 제약조건이 없다. |
예제 입력 1 복사
4
2 3 1
5 2 4 1
예제 출력 1 복사
18
예제 입력 2 복사
4
3 3 4
1 1 1 1
예제 출력 2 복사
10
언뜻보면 어려울 수 있지만 간단하다. 리터당 가격을 가지고 더 싼주유소가 나오는 곳까지만 그 가격으로 달리면 된다라는 생각을 가지고 접근하니까 쉽게 풀렸다.
for문으로 처음부터 끝까지 달린다고 가정하고, 그상황에서 현재 리터당 가격을 num변수로 하나 잡고, 들리는 도시마다 가격을 비교해서 더싸면 그 곳부터는 해당 리터당 가격으로 자동차를 달리게 하면 된다.
import sys
n = int(sys.stdin.readline())
distance = list(map(int,sys.stdin.readline().split()))
price = list(map(int,sys.stdin.readline().split()))
num = price[0]
result = 0
for i in range(n-1):
if price[i] < num:
num = price[i]
result += num * distance[i]
print(result)
'Python > 백준' 카테고리의 다른 글
2609_ 최대공약수와 최소공배수 (0) | 2022.01.18 |
---|---|
5086_배수와약수 (0) | 2022.01.15 |
1541_잃어버린 괄호 (0) | 2022.01.12 |
11399_ATM (0) | 2022.01.11 |
1931_회의실 배정...반례? (0) | 2022.01.10 |